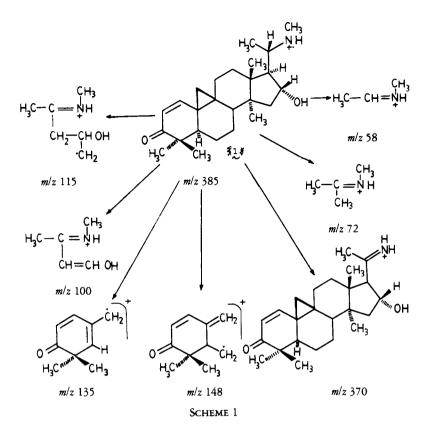
ALKALOIDS FROM THE LEAVES OF BUXUS PAPILOSA

ATTA-UR-RAHMAN,* M. IQBAL CHOUDHARY, IRSHAD ALI, and HABIB-UR-REHMAN

H.E.J. Research Institute of Chemistry, University of Karachi, Karachi-32/Pakistan

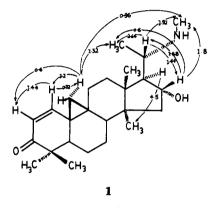
ABSTRACT.—A new steroidal alkaloid, cycloxobuxoviricine (1), has been isolated from the leaves of *Buxus papilosa* and its structure determined by spectroscopic methods. Isolation and ¹³C-nmr spectrum of another alkaloid, buxaminol B (2), not previously reported from the leaves of this plant is also described.


In our continuing studies on the leaves of *Buxus papilosa* C.K. Schnn, Linn. (Buxaceae), we have reported several new alkaloids (1-6). The present investigation describes the isolation and structure elucidation of a new steroidal alkaloid, cycloxo-buxoviricine (1). Buxaminol B (2), which has not previously been reported from the leaves of this plant, was also isolated and its ¹³C-nmr spectrum recorded.

Cycloxobuxoviricine (1) was isolated from the alcoholic extracts of the leaves as a white amorphous solid $[\alpha]^{26}D - 41.2^{\circ}$ (CHCl₃). The ir spectrum afforded a strong absorption at 1661 cm⁻¹ indicating the presence of an α , β -unsaturated carbonyl group, probably in a six-membered ring. Other absorptions at 3100, 3400, and 3700 cm⁻¹ indicated the presence of cyclopropyl, NH, and OH groups, respectively. The uv spectrum showed absorption at 265 nm (log ϵ 3.59), characteristic of a conjugated ketonic group.

The mass spectrum of 1 showed a molecular ion at m/z 385.2955 in agreement with the molecular formula $C_{25}H_{39}NO_2$ (calcd. 385.2980) corresponding to the presence of seven double bond equivalents. The substance readily lost a methyl group to give rise to a peak at m/z 370.2728 (C₂₄H₃₆NO₂, calcd. 370.2745). The fragments at m/z148.0885 ($C_{10}H_{12}O$, calcd. 148.0888) and m/z 135.0808 ($C_9H_{11}O$, calcd. 135.0809) arose by cleavage of ring B (7). Another fragment at m/z 115.0982 (C₆H₁₃NO, calcd. 115.0997) was formed by the cleavage of ring D along with the nitrogen-bearing side chain, and the presence of an oxygen in this fragment suggested that the OH group was present on ring D, probably attached to C-15, C-16, or C-17. The peak at m/z100.0762, corresponding to the formula $C_5H_{10}NO$ (calcd. 100.0762) formed by the cleavage of ring D, was particularly informative, inasmuch as it established that the HO group was present on a five-carbon fragment. The most probable points of attachment of the HO group were, therefore, at C-16 or C-17. Another important fragment at m/z 72.0817 (C₄H₁₀N, calcd. 72.0813) arose by cleavage of ring D along with the N-bearing side chain and an intramolecular proton transfer. The absence of oxygen in this four-carbon fragment established that the hydroxyl group was not present on the C-17 carbon atom and pointed to its attachment at C-16.

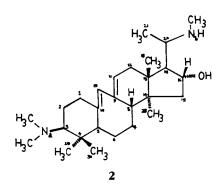
Compound 1 showed a base peak at m/z 58.0655 corresponding to the composition C₃H₈N (calcd. 58.0656), which was attributed to the loss of CH₃-CH=N-CH₃, a commonly encountered fragmentation in other related alkaloids (8). Linked scan measurements of the fragmentation of m/z 385 showed that the ions such as m/z 370, 148, 135, 115, 100, 72, and 58 directly arose from the molecular ion. The key fragmentations of cycloxobuxoviricine are presented in Scheme 1.


The ¹H-nmr spectrum of the cycloxobuxoviricine (**1**) showed four singlets for the four tertiary methyl groups at $\delta 0.95$, $\delta 0.97$, $\delta 1.10$, and $\delta 1.13$, while a doublet centered at $\delta 1.20$ ($J_{21,20}=6.09$ Hz) was assigned to the C-21 secondary methyl group. The presence of a cyclopropyl group was shown by the presence of a doublet at $\delta 0.76$ ($J_{19\alpha,19\beta}=4.59$ Hz). The other doublet was embedded in the methyl/methylenic region of the spectrum. A 3-proton singlet at $\delta 2.59$ was assigned to the N-CH₃ group. A

double quartet centered at δ 2.98 was assigned to the C-20 proton ($J_{20,21}=6.09$ Hz, $J_{20,17}=10.63$ Hz). A series of homodecoupling experiments was carried out to establish the interrelationship between coupled protons. Irradiation at δ 2.98 resulted in the collapse of the doublet for the 21-methyl group at δ 1.20 into a sharp singlet. The C-17 proton appeared as a double doublet centered at δ 2.13 ($J_{17,16}=3.93$ Hz, $J_{17,20}=10.63$ Hz). Irradiation at δ 2.98 (H-20) also resulted in the collapse of the double doublet for the proton at δ 2.13 into a simple doublet ($J_{17,16}=3.93$ Hz). A multiplet centered at δ 4.28 was assigned to the C-16 proton adjacent to the hydroxyl group. Irradiation at δ 4.28 resulted in the collapse of the double doublet for the C-17 proton into a simple doublet at δ 2.13 ($J_{17,20}=10.63$ Hz). Doublets at δ 5.94 and δ 6.73 ($J_{1,2}=10.02$ Hz) were assigned to C-2 and C-1 olefinic protons, conjugated with the carbonyl group in ring A, respectively.

Two dimensional ¹H-nmr measurements (2D-*J* resolved, COSY 45) afforded data that fully agreed with the proposed structure (**1**) for cycloxobuxoviricine. The multiplicity of the proton signals could be unambigously established from the 2-D*J*-resolved spectrum of cycloxobuxoviricine, while the COSY 45 spectrum confirmed the ¹H-¹H connectivities established by homodecoupling experiments. The nOe difference measurements were also carried out to establish the relative stereochemistry of the various protons. Irradiation of the C-16 proton at δ 4.28 resulted in 1.68% nOe of C-20 H, while irradiation at C-20 H resulted in a corresponding 1.44% nOe of the C-16 proton. This suggested the β -orientation of C-16 H and C-20 H. The absence of any nOe interaction with C-17 H indicated the α -orientation of C-17 H. Irradiation at C-16 H also resulted in 1.8% nOe at N-CH₃ and 0.6% at 21-CH₃. This further supported the β orientation of C-16 H and, hence, the α -orientation of geminal HO at C-16. Irradiation at C-20 H resulted in 1.92% nOe of N-CH₃ and 2.64% nOe of 18-CH₃. This Journal of Natural Products

showed the β -orientation of C-20 H. Irradiation at C-17 H resulted in 4.5% nOe of 28-CH₃ which established the α -orientation of C-17 H and 28-CH₃. Irradiation at the C-19 α cyclopropyl proton resulted in 1.2% nOe of C-1 olefinic proton, 0.6% nOe of C-2 olefinic proton, 1.32% nOe of 18-CH₃, and 0.96% nOe of N-CH₃, which suggested the relative stereochemistry of the molecule as assigned in structure **1**. This was further supported by NOESY measurements as well as by a comparison of the chemical shifts of protons in cycloxobuxoviricine with other closely related alkaloids having a similar relative stereochemistry (9, 10). The ¹³C-nmr spectrum could not be recorded due to the small quantity of the sample isolated (3.2 mg).


In the light of the above studies, structure **1** was assigned to cycloxobuxoviricine. Another alkaloid (**2**), isolated from the leaves, was identified as buxaminol B on the basis of comparison of spectral data (ms, nmr, ir, and uv) reported in the literature (11, 12). ¹H-nmr assignments were further confirmed by 2-D-¹H-nmr experiments (2-D *J*-resolved, COSY 45, NOESY). The ¹³C-nmr assignments (3,6) of various carbon atoms (Table 1) were substantiated by gated spin echo measurements and agree with the structure (**2**) proposed by Voticky *et al.* (12).

Buxaminol B has not been found previously in the leaves of this plant but has been isolated from *Buxus sempervirens* (12).

Carbon No.	Chemical shift (ppm)	Carbon No.	Chemical shift (ppm)
1	37.82	14	47.27
2	30.00	15	43.48
3	71.62	16	77.04
4	41.31	17	62.61
5	49.20	18	17.07
6	23.15	19	127.00
7	25.69	20	58.73
8	51.10	21	15.11
9	138.01	28	18.01
10	137.10	29	24.93
11	128.60	30	15.39
12	32.00	$N_a(CH_3)_2$	44.88
13	44.00	N _b CH ₃	32.01

TABLE 1. ¹³C-nmr Spectral Data of Buxaminol B^a

^aMultiplicities were confirmed by gated spin echo measurements.

EXPERIMENTAL

GENERAL EXPERIMENTAL PROCEDURES.—Mass spectra were recorded on a Varian MAT 312 double focusing mass spectrometer connected to DEC-PDP 11/34 computer system. The ¹H-nmr spectra were recorded in CDCl₃ on Bruker AM-300 NMR spectrometer at 300 MHz, while the ¹³C-nmr spectra were recorded at 75 MHz. Chemical shifts (δ) are expressed in ppm. Ir spectra were recorded on a Jasco IRA-I infrared spectrometer. The uv spectra were recorded on Shimadzu UV 240 instrument. The optical rotation was determined with a Polartronic D instrument.

PLANT MATERIAL.—The leaves of *B. papilosa* were collected from the northern region of Pakistan by the Forest Institute, Peshawar. The plant was identified by Prof. S. Irtifaq Ali, Department of Botany, University of Karachi, and a voucher specimen has been deposited in the Department of Botany, University of Karachi.

EXTRACTION AND PURIFICATION. — The EtOH extract of the air-dried leaves (10 kg) of *B. papilosa* was evaporated under vacuum to afford a gum (48 g). This gum ws taken up in 10% HOAc. The aqueous acidic mixture was extracted with CHCl₃ on the basis of differential basicities.

ISOLATION OF CYCLOXOBUXOVIRICINE (1).—The fraction obtained at pH 4.0 (14 g) was loaded on a silica gel column (450 g) that was successively eluted with increasing polarities of mixtures of Me₂CO-MeOH (6:4) contained a number of alkaloids (2.00 g). The mixture was subjected to repeated preparative tlc (silica gel) in hexane-EtOAc-diethylamine (18:3:1), which afforded cyclobuxoviridine, *N*-benzoylbuxidienine, cyclobuxoviricine along with a minor new alkaloid, cycloxobuxoviricine (1), as a white amorphous powder (3.2 mg), $[\alpha]^{26}D - 41.2^{\circ}$ CHCl₃; ir ν max (CHCl₃), 3700, 3400, 3100, 1661, 1600 cm⁻¹; uv λ max (MeOH) 265 nm (log 3.59); ¹H nmr (300 MHz, CDCl₃) δ 0.76 (d, 1H, $J_{19\alpha, 19\beta}$ =4.59 Hz, 19 α CH), 0.95 (s, 3H, t-CH₃), 0.97 (s, 3H, t-CH₃), 1.10 (s, 3H, t-CH₃), 1.13 (s, 3H, t-CH₃), 1.20 (d, 3H, $J_{21,20}$ =6.09 Hz, 21-CH₃), 2.13 (dd, 1H, $J_{17,16}$ =3.93 Hz, $J_{17,20}$ =10.63 Hz, 17-CH), 2.59 (s, 3H, N-CH₃), 2.98 (dq, 1H, $J_{20,21}$ =6.09 Hz, $J_{20,17}$ =10.63 Hz, 20-CH), 4.28 (m, 1H, 16-CH₃), 5.94 (d, 1H, $J_{2,1}$ =10.02 Hz, 2-CH), 6.73 (d, 1H, $J_{1,2}$ =10.02 Hz, 1-CH); ms m/z 385.2980 (M⁺, C₂₅H₃₉NO₂), 370.2728 (C₂₄H₃₆NO₂), 148.0875 (C₁₀H₁₂O), 135.0808 (C₉H₁₁O), 115.0982 (C₆H₁₃NO), 100.0762 (C₅H₁₀NO), 72.0817 (C₄H₉N), 58.0655 (C₃H₈N).

ISOLATION OF BUXAMINOL B (2).—The defatted aqueous acidic extract was then basified with NH₃ solution (pH 8.5) and extracted with EtOAc (6 liters). The crude alkaloids, obtained on evaporation of the EtOAc extracts (8 g), were subjected to preparative tlc (silica gel) in C_6H_{14} -Et₂NH-Me₂CO (18:1:1) to afford the alkaloid, buxaminol B, (ms, nmr, ir, and uv), as a light yellow amorphous powder (20 mg), [α]D 17.51° CHCl₃; ¹³C nmr (75 MHz, CDCl₃, δ), Table 1; m/z 414.359 (M⁺, $C_{27}H_{46}N_2O$).

LITERATURE CITED

- 1. Atta-ur-Rahman and M. Nisa, Heterocycles, 20, 69 (1984).
- 2. Atta-ur-Rahman and M. Nisa, Z. Naturforsch., 39b, 839 (1984).
- Atta-ur-Rahman, S. Farhi, G.A. Miana, M. Nisa, and W. Voelter, Z. Naturforsch., 40b, 567 (1985).
- 4. Atta-ur-Rahman, M. Nisa, and T. Zamir, Z. Naturforsch., 39b, 127 (1984).
- 5. Atta-ur-Rahman, M. Nisa, and S. Farhi, Planta Medica, 49, 126 (1983).
- 6. Atta-ur-Rahman, M.I. Choudhary, and M. Nisa, Heterocycles, 23, 1951 (1985).
- H. Budzikiewicz, C. Djerassi, and D.H. Williams, "Structure Elucidation of Natural Products by Mass Spectrometry," vol. 11. Holden-Day, Inc., 1964, p. 87.

- 8. G.R. Waller and O.C. Dermes, "Biochemical Applications of Mass Spectrometry," John Wiley and Sons, New York, 1980, p. 783.
- 9. T. Nakano, S. Terao, and Y. Saeki, J. Chem. Soc., 1412 (1966).
- 10. T. Nakano and S. Terao, Tetrahedron Lett., 1035 (1964).
- 11. D. Stauffacher, Helv. Chim. Acta., 47, 968 (1964).
- 12. Z. Voticky, O. Bauerova, and V. Paulik, Coll. Czech. Chem. Comm., 40, 3055 (1975).

Received 3 June 1985